Rotational isomerism of acetic acid isolated in rare-gas matrices: Effect of medium and isotopic substitution on IR-induced isomerization quantum yield and cis-->trans tunneling rate.
نویسندگان
چکیده
Rotational isomerization of acetic acid (CH3COOH) is studied in Ar, Kr, and Xe matrices. The light-induced trans-->cis reaction is promoted using resonant excitation of a number of modes in the 3500-7000 cm(-1) region, and the quantum yields for this process are measured for various acetic acid isotopologues and matrix materials. For excitation of acetic acid at energies above the predicted isomerization energy barrier (> or =4400 cm(-1)), the measured quantum yields are in average 2%-3%, and this is one order of magnitude smaller than the corresponding values known for formic acid (HCOOH). This difference is interpreted in terms of the presence of the methyl group in acetic acid, which enhances energy relaxation channels competing with the rotational isomerization. This picture is supported by the observed large effect of deuteration of the methyl group on the photoisomerization quantum yield. The trans-->cis reaction quantum yields are found to be similar for Ar, Kr, and Xe matrices, suggesting similar energy relaxation processes for this molecule in the various matrices. The IR-induced cis-->trans process, studied for acetic acid deuterated in the hydroxyl group, shows reliably larger quantum yields as compared with the trans-->cis process. For pumping of acetic acid at energies below the predicted isomerization barrier, the trans-->cis reaction quantum yields decrease strongly when the photon energy decreases, and tunneling is the most probable mechanism for this process. For the cis-->trans dark reaction, the observed temperature and medium effects indicate the participation of the lattice phonons in the tunneling-induced process.
منابع مشابه
Infrared-induced conformational interconversion in carboxylic acids isolated in low-temperature rare-gas matrices
An overview of our recent studies dealing with infrared-induced conformational interconversion of carboxylic acids isolated in rare-gas matrices is presented. Extensive rotational photoisomerization studies have been performed on formic acid, which is the simplest organic acid enabling this kind of processes. Formic acid has two conformers and interconversion between them can be induced by vibr...
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملRotational isomerism in acetic acid: the first experimental observation of the high-energy conformer.
The high-energy conformer of acetic acid (cis-AA) is produced in an Ar matrix by vibrational excitation of the OH stretching overtone of the ground conformational state (trans-AA). IR-absorption spectroscopy provides a clear identification of the reaction product. cis-AA converts back to trans-AA in a time scale of minutes at 8 K by tunneling.
متن کاملStudy of Cis–trans Isomerization Mechanism of [3-(3-Aminomethyl) Phenylazo] Phenyl Acetic Acid as a Causative Role in Alzheimer Using Density Functional Theory
Amyloid-β (Aβ) self-assembly into cross-β amyloidfibrils is implicated in a causative role in Alzheimer’s disease pathology.Uncertainties persist regarding the mechanisms of amyloid self assembly and the role of metastable prefibrillar aggregates. Aβ fibrilsfeature a sheet-turn-sheet motif in the constituent β-strands; as such, turn nucleation has been proposed as a rate-limiting step in the se...
متن کاملFormic and acetic acids in a nitrogen matrix: Enhanced stability of the higher-energy conformer.
Formic acid (HCOOH, FA) and acetic acid (CH(3)COOH, AA) are studied in a nitrogen matrix. The infrared (IR) spectra of cis and trans conformers of these carboxylic acids (and also of the HCOOD isotopologue of FA) are reported and analyzed. The higher-energy cis conformer of these molecules is produced by narrowband near-IR excitation of the more stable trans conformer, and the cis-to-trans tunn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 121 3 شماره
صفحات -
تاریخ انتشار 2004